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Fig. 1. We present a contrastive diffusion method that controls the consistency (top row) and diversity (second row) in group choreography.

Music-driven group choreography poses a considerable challenge but holds
significant potential for a wide range of industrial applications. The abil-
ity to generate synchronized and visually appealing group dance motions
that are aligned with music opens up opportunities in many fields such
as entertainment, advertising, and virtual performances. However, most of
the recent works are not able to generate high-fidelity long-term motions,
or fail to enable controllable experience. In this work, we aim to address
the demand for high-quality and customizable group dance generation by
effectively governing the consistency and diversity of group choreographies.
In particular, we utilize a diffusion-based generative approach to enable the
synthesis of flexible number of dancers and long-term group dances, while
ensuring coherence to the input music. Ultimately, we introduce a Group
Contrastive Diffusion (GCD) strategy to enhance the connection between
dancers and their group, presenting the ability to control the consistency or
diversity level of the synthesized group animation via the classifier-guidance
sampling technique. Through intensive experiments and evaluation, we
demonstrate the effectiveness of our approach in producing visually capti-
vating and consistent group dance motions. The experimental results show
the capability of our method to achieve the desired levels of consistency
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and diversity, while maintaining the overall quality of the generated group
choreography.
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1 INTRODUCTION
With the widespread presence of digital social media platforms, the
act of creating and editing dance videos has gained immense popu-
larity among social communities. This surge in interest has resulted
in the daily production and watching of millions of dancing videos
across online platforms [Fink et al. 2021; Kico et al. 2018]. Recently,
researchers from computer vision, computer graphics, and machine
learning communities have devoted considerable attention to de-
veloping techniques that can generate natural dance movements
from music [Bisig 2022]. These advancements have far-reaching
implications and find applications in various domains, such as ani-
mation [Li et al. 2021b], the creation of virtual idols [Perez et al. 2021;
Pham et al. 2023], the development of virtual meta-verse [Lee et al.
2021], and dance education [Alaoui et al. 2014; Shi 2021; Soga et al.
2005]. These techniques empower artists, animators, and educators
alike, providing them with powerful tools to enhance their creative
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endeavors and enrich the dance experience for both performers and
audiences.

While significant progress has been made in generating dancing
motions for single dancer [Ferreira et al. 2021; Huang et al. 2020; Kim
et al. 2022b; Li et al. 2021b; Perez et al. 2021; Siyao et al. 2022; Tseng
et al. 2023], the task of producing cohesive and expressive choreog-
raphy for a group of dancers has received limited attention [Le et al.
2023]. The generation of synchronized group dance motions that are
both realistic and aligned with music remains a challenging prob-
lem in the field of computer animation and motion synthesis [Chen
et al. 2021; Yalta et al. 2019]. This is primarily due to the complex
relationship between music and human motion, the diverse range
of motions required for group performances, and the insufficient
of a suitable dataset [Le et al. 2023]. At present, AIOZ-GDance [Le
et al. 2023] stands as the most recent extensive dataset available to
facilitate the task of generating group choreography. Besides, while
current algorithms can generate individual movements and choreo-
graphic sequences, ensuring that these elements align seamlessly
with the overall group performance is also paramount [Tsuchida
et al. 2019].
Different from solo dance, group dance involves coordination

and interaction between dancers, making it crucial and challenging
to establish correlations between motion series within a group [Le
et al. 2023]. Besides, group dance can involve complex and diverse
choreographies among participating dancers while still maintain-
ing a semantic relationship between the motion and input music.
Exploring the consistency and diversity between the movements
of dancers of the synthesized group choreography is of vital impor-
tance to create a natural and expressive performance. The ability
to control the consistency and diversity in group dance generation
holds great potential across various applications [Bisig 2022]. One
such application is in the realm of entertainment and performance.
Choreographers and creative teams can leverage this control ability
to design captivating group dance routines that seamlessly blend
synchronized movements with moments of individual expression.
Second, in the context of animation and virtual metaverses, the con-
trol over consistency and diversity allows for the creation of visually
stunning and immersive virtual dance performances. By balancing
the synchronization of dancers’ movements, while also introducing
variations and unique flourishes, the generated group dances can
captivate audiences and evoke a sense of realism and authenticity.
Last but not least, in dance education and training, the ability to
regulate consistency and diversity in group dance generation can be
invaluable. It enables instructors to provide students with a diverse
range of generated dance routines and samples that challenge their
abilities, promote collaboration, and foster creativity. By dynami-
cally adjusting the level of consistency and diversity, educators can
cater to the unique need and skill level of each individual dancer,
creating more inclusive instructions and enriching the learning en-
vironment [Phillips et al. 2009]. Although plenty of applications
can be listed, due to some limitations of data establishment [Le
et al. 2023], investigating the consistency and diversity in group
choreography has not been carefully explored.
In this paper, our goal is to develop a controllable technique for

group dance generation. We present a Group Contrastive Diffusion
(GCD) strategy that learns an encoder to capture the key targets

between group dance movements. Diffusion modeling provides a
flexible framework for manipulating the dance distribution, which
allows us to modulate the degree of diversity and consistency in
the generated dances. By using denoising diffusion probabilistic
model [Ho et al. 2020] as a key technique, we can effectively control
the trade-off between diversity and consistency during the group
dance generation, thanks to the guided sampling process. With this
approach, we can guide the generation process toward a desired
balance between diversity and consistency levels. Moreover, incor-
porating the encoder, which learns the association between the
dancers and their group, can help to maintain the generated dance
moves so that they are consistent with a specific dance style, music
genre, or any long-term chorus. We empirically show that this ap-
proach has the potential to enhance the quality and naturalness of
generated group dance performances, making it more appealing for
various applications.

To summarize, our key contributions are as follows:

• We introduce contrastive diffusion, the first denoising dif-
fusion approach for music-driven group choreography. Our
model is able to generate high-fidelity and diverse group
dancing motions that are aligned with the input music.

• We develop a method to trade-off between the consistency
and diversity of generated group motions. Our framework
allows users to control and generate different outputs from a
single piece of input music.

• Extensive experiments along with user study evaluations
demonstrate state-of-the-art performance of our model in
synthesizing group choreography animation, as well as cre-
ating long dance motion sequences while maintaining the
coherency among dancers.

2 RELATED WORK

2.1 Music-driven Choreography
Creating natural and authentic human choreography from music
is a complex task [Joshi and Chakrabarty 2021]. One commonly
employed technique involves using a motion graph derived from a
vast motion database to generate new motions [Kovar et al. 2002].
This involves combining various motion segments and optimizing
transition costs along the graph path. Alternatively, there are other
methods that incorporate music-motion similarity matching con-
straints to ensure consistency between the motion and the accompa-
nying music [Kim et al. 2003; Safonova and Hodgins 2007]. Previous
studies have extensively explored these methodologies [Fan et al.
2011; Kim et al. 2006; Lee et al. 2013; Shiratori et al. 2006]. How-
ever, most of these approaches relied on heuristic algorithms to
stitch together pre-existing dance segments sourced from a limited
music-dance database [Fan et al. 2011]. While these methods are
successful in generating extended and realistic dance sequences,
they face limitations when trying to create entirely novel dance
fragments [Ofli et al. 2011].
In recent years, several signs of progress have been made in the

field of music-to-dance motion generation using Convolutional Net-
work (CNN) [Ahn et al. 2020; Chan et al. 2019; Sun et al. 2020; Ye
et al. 2020; Yin et al. 2022; Zhuang et al. 2022], Recurrent Network
(RNN) [Alemi et al. 2017; Huang et al. 2020; Sun et al. 2020; Tang
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et al. 2018; Yalta et al. 2019], Graph Neural Network (GNN) [Au et al.
2022; Ferreira et al. 2021; Ren et al. 2020; Zhou and Luo 2022], Gen-
erative Adversarial Network (GAN) [Lee et al. 2019; Sun et al. 2020],
or Transformer [Kim et al. 2022b; Li et al. 2022a,b, 2021b; Perez et al.
2021; Siyao et al. 2022]. Typically, these methods rely on multiple
inputs such as the current music and a brief history of past dance
movements to predict the future sequence of human poses. Recently,
Gong et al. [2023] propose an interesting task of generating dance by
simultaneously utilizing both music and text instruction. A music-
text feature fusion module was designed to fuse the inputs into a
motion decoder to generate dance conditioned on both music and
text. However, although these methods have the potential to pro-
duce natural and realistic dancing motion, they are often unable to
create synchronized and harmonious movements between multiple
dancers [Le et al. 2023]. Ensuring coordination and synchroniza-
tion between dancers is a complicated problem, as it involves not
only individual pose predictions but also the seamless integration of
these poses within the context of a group. Achieving synchronized
and harmonious group movements requires considering spatial and
temporal relationships among dancers, their interactions, and the
overall choreographic structure [Tsuchida et al. 2019]. Thus, further
advances in the field are considered to address these challenges, in-
cluding works that use deep learning approaches such as Variational
Autoencoder (VAE) [Hong et al. 2022; Li et al. 2021a], GAN [Zhu
et al. 2022], and Normalising Flow [Perez et al. 2021]. Zhou et al.
[2019b] explore the use of VAE to combine motion data with style
embeddings so as to generate diverse and stylistically consistent
dance movements. Meanwhile, Huang and Liu [2021] introduce a
conditional GAN-based approach for generating new dance mo-
tions. Perez et al. [2021] combine a multimodal transformer encoder
with a normalising-flow-based decoder to estimate a probability
distribution encompassing the potential succeeding poses. Unfortu-
nately, most of these networks are limited by their ability to model
long-term dance sequences (e.g., over 8 seconds) as the generated
sequence may freeze or drift towards the end of the music [Sun
et al. 2022]. Feng et al. [2023] learn the dance movements using un-
paired data with music style and motion style exemplars of the same
style. To facilitate long-term generation, they apply a motion repeat
constraint to predict future frames by attending to the historical
motions. Nevertheless, this would limit the flexibility of the model
by forcing it to always look into the past. Aristidou et al. [2022]
use the motion motifs (clusters of similar short motion sequences)
and motion signatures [Aristidou et al. 2018] to guide the dance
synthesis to preserve the global consistency following a specific
dance style. Consistency in single dance (as mentioned in [Aristidou
et al. 2022]) is related to temporal information of a motion sequence
itself, whereas diversity and consistency in group dance paradigm
are factors between motions of two or more dancers within a period.

2.2 Group Choreography
Group choreography and its related problem, multi-person mo-
tion prediction, have been an active research area with numerous
studies addressing the challenges of predicting the behaviors of
multiple individuals [Aliakbarian et al. 2020; Arikan and Forsyth
2002; Chen et al. 2020; Guo et al. 2022; Khaire and Kumar 2022;

Kiciroglu et al. 2022; Kim et al. 2022a; Mehta et al. 2018; Song et al.
2022; Stergiou and Poppe 2019]. One approach from Alahi et al.
[2014] utilizes a Markov chain model to jointly analyze the tra-
jectories of several pedestrians and predict their destinations in a
given scene. Another method presented in [Adeli et al. 2020] inte-
grates social interactions and the visual context of the environment
to forecast the future motion of multiple individuals. Multi-Range
Transformers, introduced by Wang et al. [2021], has the capability
to predict the movements of groups with more than ten people
engaging in social interactions. Recently, Le et al. [2023] develop a
novel approach that utilizes input music sequences and a set of 3D
positions of dancers to generate multiple choreographies with group
coherency. Wang et al. [2022] present a collaboration system to de-
termine which period the dancers should perform dancing with each
other and then produce the corresponding motion sequence for each
dancer. These aforementioned methods leverage various techniques
to capture social interactions [Arikan and Forsyth 2002; Willis et al.
2004], spatial dependencies [Aliakbarian et al. 2020; Mehta et al.
2018], and temporal dynamics [Chen et al. 2020; Stergiou and Poppe
2019], generally aiming to predict accurate and socially plausible
future motions for multiple individuals in different scenarios. How-
ever, despite the notable advancements achieved, there remains a
demand for further investigation of the correlation between the
consistency and diversity of motions within group context [Le et al.
2023]. A deeper understanding of how to attain the optimal balance
between consistency and diversity holds the potential to unlock
new possibilities for creating group choreographies that benefit the
users in many circumstances.

2.3 Diffusion for Music-driven Choreography
Recently, diffusion-based approaches have shown remarkable results
on several generative tasks [Yang et al. 2022] ranging from image
generation [Dhariwal and Nichol 2021; Nichol et al. 2022a; Ramesh
et al. 2022; Rombach et al. 2022; Saharia et al. 2022], audio synthe-
sis [Kong et al. 2020; Popov et al. 2021], pose estimation [Nguyen
et al. 2023], natural language generation [Nichol and Dhariwal 2021],
and motion synthesis [Alexanderson et al. 2023; Dabral et al. 2023;
Ren et al. 2023; Tevet et al. 2023], to point cloud generation [Luo and
Hu 2021; Nichol et al. 2022b], 3D object synthesis [Poole et al. 2022;
Seo et al. 2023; Xiang et al. 2023], and scene creation [Huang et al.
2023; Sharp et al. 2022; Vuong et al. 2023; Zeng et al. 2022]. Diffusion
models have shown that they can achieve high mode coverage, un-
like GANs, while still maintaining high sample quality [Ulhaq et al.
2022; Yang et al. 2022]. This ability makes them an ideal method for
the music-to-dance generation task. Dabral et al. [2023] introduce a
denoising diffusion-based framework that enables the generation
of extended, realistic, and semantically faithful human motion se-
quences by considering diverse conditioning contexts (e.g., text or
music). Tseng et al. [2023] present an editable dance generation
model (EDGE), which exploits the capability of a transformer-based
diffusion architecture and a strong music feature extractor, to pro-
vide flexible editing capabilities for dance applications. Most existing
diffusion-based approaches for human motion/dance synthesis only
focus on generating motion sequences for a single character , condi-
tioned on information such as text [Tevet et al. 2023; Zhang et al.
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2022], audio [Alexanderson et al. 2023; Tseng et al. 2023], or both
audio and text [Dabral et al. 2023; Zhou and Wang 2023]. Different
from these prior works, we aim to create group of dancing motions
from music, which includes coordinating multiple characters, avoid-
ing collisions, and maintaining coherence between them. In addition
to the vanilla diffusion loss term used for training in previous works,
our method employs a contrastive learning strategy that directly
influences the training of the diffusion reverse process, enhancing
the association within the dance group. In terms of controllable
generation, while the work of Tevet et al. [2023] can edit individual
motion sequence using text prompts or Alexanderson et al. [2023]
interpolates different motion styles using classifier-free guidance
[Ho and Salimans 2022], our approach provides the means to con-
trol the trade-off between consistency and diversity of group dance
through the learned contrastive encoder. Recently, Chopin et al.
[2023] propose BiGraphDiff, a diffusion approach based on bipar-
tite graph architecture for text-driven human motion interactions
between two persons. Concurently, Shafir et al. [2023] train a small
communication block between two pre-trained Motion Diffusion
Models [Tevet et al. 2023] to coordinate between two instances for
two-person motion generation from text prompts. Limited by the
architectural designs, these methods can only synthesize motion for
only two persons, while our model is capable of generating group
dancing motion with flexible number of dancers.

A prominent issue of the diffusion approach for motion synthesis
is that although it is highly effective in generating diverse samples,
injecting a large amount of noise during the sampling process can
lead to inconsistent results. This issue is particularly problematic
for group dance paradigm. Therefore, our desideratum is to design
a group dance generation model with the ability to address both
diversity and consistency problem. Typically, the work in [Le et al.
2023] mainly addresses the consistency through a cross-entity at-
tention mechanism, but it is not entirely effective as diversity is
overlooked due to the deterministic nature of their main training
process. Different from them, we devise a contrastive diffusion ap-
proach to tackle these issues altogether. Our model is not only able
to create numerous distinctive dancing motions while preserving
their coherency, but it also has the flexibility to allow the user to
freely control the diversity or consistency level.

3 METHODOLOGY

3.1 Background
Given an input music sequence {𝑎1, 𝑎𝑡 , ..., 𝑎𝑇 } with 𝑡 = {1, ...,𝑇 }
indicates the index of the music frames, our goal is to generate the
group motion sequences of 𝑁 dancers: {𝑥1

1 , ..., 𝑥
1
𝑇

; ...;𝑥𝑁1 , ..., 𝑥
𝑁
𝑇
}

where 𝑥𝑖𝑡 is the pose of 𝑖-th dancer at frame 𝑡 . We represent dances
as sequences of poses in the 24-joint of the SMPL model [Loper
et al. 2015], using the 6D continuous rotation [Zhou et al. 2019a]
for every joint, along with a single 3D root translation. This rota-
tion representation ensures the uniqueness and continuity of the
rotation vector, which is more beneficial to the training of deep
neural networks. We tackle the group dance generation task by
using a diffusion-based framework to synthesize the motions from
a random noise distribution, given the music conditioning. Thanks

to the sampling process of the diffusion model, we can effectively
control the consistency and diversity in the generated sequences.

Forward Process of DiffusionModel.Given an original sample
from the real data distribution 𝑥0 ∼ 𝑞(𝑥0), following [Ho et al. 2020],
the forward diffusion process is defined as a Markov process that
gradually adds Gaussian noise to the data under a pre-defined noise
schedule up to𝑀 steps.

𝑞(𝑥𝑚 |𝑥𝑚−1) = N(𝑥𝑚 ;
√︁

1 − 𝛽𝑚𝑥𝑚−1, 𝛽𝑚𝐼 ),∀𝑚 ∈ {1, 2, ..., 𝑀} (1)

If the noise variance schedule 𝛽𝑚 is small and the number of diffu-
sion step 𝑀 is large enough, the distribution 𝑞(𝑥𝑀 ) at the end of
the process is well-approximated by a standard normal distribution
N(0, 𝐼 ), which is easy to sample from. Thanks to the nice property
of the forward diffusion, we can directly obtain the noised sample
at any arbitrary step𝑚 without traversing through the whole chain:

𝑞(𝑥𝑚 |𝑥0) = N(𝑥𝑚 ;
√
𝛼𝑚𝑥0, (1 − 𝛼𝑚)𝐼 ), (2)

𝑥𝑚 =
√
𝛼𝑚𝑥0 +

√
1 − 𝛼𝑚𝜖, 𝜖 ∼ N(0, 𝐼 ) (3)

where 𝛼𝑚 = 1 − 𝛽𝑚 and 𝛼𝑚 =
∏𝑚
𝑠=0 𝛼𝑠 .

Reverse Process. By additionally conditioning on 𝑥0, the pos-
terior of the reverse process is tractable and becomes a Gaussian
distribution:

𝑞(𝑥𝑚−1 |𝑥𝑚, 𝑥0) = N(𝑥𝑚−1; �̃�𝑚, 𝛽𝑚𝐼 ), (4)

where �̃�𝑚 and 𝛽𝑚 are the posterior mean and variance that depend
on both 𝑥𝑚 and 𝑥0, respectively. We refer the readers to [Ho et al.
2020] for a detailed derivation of the posterior mean and variance.
To obtain a sample from the original data distribution, we start
by sampling from the noise distribution 𝑞(𝑥𝑀 ) and then gradually
remove the noise until we reach 𝑥0, following the reverse process.
Therefore, our goal is to train a neural network to approximate the
posterior 𝑞(𝑥𝑚−1 |𝑥𝑚) of the reverse process as:

𝑝𝜃 (𝑥𝑚−1 |𝑥𝑚) = N(𝑥𝑚−1; 𝜇𝜃 (𝑥𝑚,𝑚), Σ𝜃 (𝑥𝑚,𝑚)) (5)

We follow [Ho et al. 2020] to model only the mean 𝜇𝜃 (𝑥𝑚,𝑚) of
the reverse distribution while keeping the variance Σ𝜃 (𝑥𝑚,𝑚) fixed
according to the noise schedule. However, instead of predicting
the noise 𝜖𝑚 at any arbitrary step𝑚 as in their approach, we train
the network to learn to predict the original noiseless signal 𝑥0. The
sample at the previous step𝑚−1 can be obtained by noising back the
predicted 𝑥0 through Equation 3. For conditional generation setting,
the network is additionally conditioned with the conditioning signal
𝑐 as 𝑥0 ≈ G𝜃 (𝑥𝑚,𝑚, 𝑐) with model parameters 𝜃 .

3.2 Group Diffusion Denoising Network
Our model architecture is illustrated in Figure 2. We utilize a trans-
former based architecture to generate the whole sequence in one go.
Compared with recent auto-regressive approach [Le et al. 2023], our
method does not suffer from the error accumulation problem (i.e.,
the prediction error accumulates over time since the current-frame
outputs are used as inputs to the next frame in the auto-regressive
fashion) and thus can generate arbitrary long motion dance se-
quences without freezing effects [Petrovich et al. 2021; Tseng et al.
2023]. The input of our network at each diffusion step𝑚 is the noisy
group sequence 𝑥𝑚 = {𝑥1

𝑚,1, ..., 𝑥
1
𝑚,𝑇

; ...;𝑥𝑁
𝑚,1, ..., 𝑥

𝑁
𝑚,𝑇

}, however, we
skip the𝑚 index for ease of notation from now on.
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Fig. 2. Detailed illustration of our method for group choreography generation. We adopt a transformer architecture to generate the entire sequence all at once.
The input of the denoising network is a noisy group motion sample at each step𝑚, along with the conditioning music. The model predicts noiseless sample
𝑥0, which is then diffused back to 𝑥𝑚−1 to continue the process until reaching𝑚 = 0. We further propose to learn the consistency and diversity of samples
through a contrastive learning objective with the Contrastive Encoder. The learned encoder is used as guidance signals to control the generation process.

3.2.1 Music-Motion Transformer. Given an input extracted audio se-
quence 𝑎 = {𝑎1, 𝑎2, ..., 𝑎𝑇 }, we employ a transformer encoder archi-
tecture [Vaswani et al. 2017] to encode the music into the sequence
of hidden audio representation {𝑐1, 𝑐2, ..., 𝑐𝑇 }, which will be used as
the conditioning context to the diffusion denoising network. Specif-
ically, we follow the encoder layer as in [Vaswani et al. 2017] which
consists of multi-head self-attention layers and feed-forward layers
to effectively encode the multi-scale rhythmic patterns and long-
term dependencies between music frames. The diffusion time-step
𝑚 is also projected to the transformer dimension through a separate
Multi-layer Perceptron (MLP) with 3 hidden layers to get the em-
bedding 𝜏𝑒𝑚𝑏 , then concatenated with the music feature sequence
to obtain the final conditioning context 𝑐 = {𝑐1, 𝑐2, ..., 𝑐𝑇 , 𝜏𝑒𝑚𝑏 }.

Although group choreography incorporates the problem of learn-
ing the interaction between dancers, we still need to learn the cor-
relation between the dance movements and the accompanying mu-
sic audio for each dancer. Therefore, we design the Music-Motion
Transformer to essentially focus on learning the direct connection
between the motion and the music of each individual dancer (and not
considering the interconnection among dancers yet). Each frame
of the noised input motion 𝑥𝑖𝑡 is projected into the transformer
dimension by a linear layer followed by an additive positional en-
coding [Vaswani et al. 2017]. Given the whole group sequence in-
cluding all dancers {𝑥1

1 , ..., 𝑥
1
𝑇

; ...;𝑥𝑛1 , ..., 𝑥
𝑛
𝑇
}, we separately encode

the motion features of each individual dancer by utilizing the multi-
head self-attention [Vaswani et al. 2017] with masking strategy. We
implement the masked self-attention (MSA) mechanism as follows:

MSA(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾⊤√︁
𝑑𝑘

+𝑚𝑙𝑜𝑐𝑎𝑙

)
𝑉 , (6)

𝑄 = 𝑥𝑊𝑄 , 𝐾 = 𝑥𝑊𝐾 , 𝑉 = 𝑥𝑊𝑉 (7)

where𝑊𝑄 ,𝑊𝐾 ∈ R𝑑×𝑑𝑘 and𝑊𝑉 ∈ R𝑑×𝑑𝑣 are learnable projection
matrices to transform the input to query, key, and value, respec-
tively.𝑚𝑙𝑜𝑐𝑎𝑙 is the local attention mask illustrated in Figure 3a. This
mask ensures each individual can only attend to their own motion.
Subsequently, to incorporate the music conditioning context 𝑐 into
each individual motion features, we adopt a transformer decoder
architecture [Vaswani et al. 2017] with cross-attention mechanism
(CA) [Saharia et al. 2022; Tseng et al. 2023; Vaswani et al. 2017],
where the motion is the query and the music is the key/value.

CA(�̃�, �̃�, �̃� ) = softmax

(
�̃��̃�⊤√︁
𝑑𝑘

)
�̃� , (8)

�̃� = 𝑥�̃�𝑄 , �̃� = 𝑐�̃�𝐾 , �̃� = 𝑐�̃�𝑉 (9)

where 𝑥 is the output activation of the MSA block, and �̃�𝑄 , �̃�𝐾 ,
�̃�𝑉 are the learnable projection matrices that have similar behavior
to the MSA mechanism.
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(a) (b)

Fig. 3. The local attention mask 𝑚𝑙𝑜𝑐𝑎𝑙 (a) and global attention mask
𝑚𝑔𝑙𝑜𝑏𝑎𝑙 (b). The blue cell indicates where frames can attend to each other.
Blue color represents zero value of the mask while gray color represents
minus infinity. 𝑥𝑖[1:𝑇 ] indicate motion sequence of 𝑖-th dancer.

3.2.2 Group Global Attention. To ensure the coherency and non-
collision in the movements of all dancers within the group, such
that their dances should correlate with each other under the mu-
sic condition instead of dancing asynchronously , we first perform
global attention via a masked attention mechanism similar to Equa-
tion 6 with a full masking strategy 𝑚𝑔𝑙𝑜𝑏𝑎𝑙 . The attention mask
is illustrated in Figure 3b. It allows a dancer to fully attend to all
other dancers under the global receptive field. Then, we propose
the Group Modulation to enforce the group constraints within the
group embedding information.

Inspired by StyleGan [Karras et al. 2019], in which the synthesized
image can be manipulated via a latent style vector, we aim to learn
a group embedding information from the input music in order to
control the group dance generation process. We first apply temporal
average pooling to the encoded music feature sequence to obtain
a compact representation of the input music 𝑐 = 1

𝑇

∑𝑇
𝑡=1 𝑐𝑡 . To

increase the variation and diversity of the group information (i.e.,
avoid limiting the group embedding to only one style of the input
music), we inject a random noise drawn from a standard gaussian
distribution 𝑧 ∼ N(0, 𝐼 ) into 𝑐 . We use an 8-layer MLP to learn a
mapping from the audio representation to the group embedding.
We also add a learnable embedding token 𝑒𝑛 from a variable-size
lookup table 𝐸 ∈ R𝑁×𝐷 up to 𝑁 maximum dancers, to represent
the variation of dancers in the sequence since each sequence may
contain different number of dancers. In summary, the process can
be written as follows:

𝑤 = MLP

(
𝑧 + 1

𝑇

𝑇∑︁
𝑡=1

𝑐𝑡

)
+ 𝑒𝑛, 𝑧 ∼ N(0, 𝐼 ) (10)

Group Modulation. To better apply the group information con-
straints to the learned hidden features of the dancers, we adopt a
Group Modulation layer that learns to adaptively influence the out-
put of the transformer attention block by applying an affine transfor-
mation to the intermediate features based on the group embedding
𝑤 . More specifically, we utilize two separate linear layers to learn
the affine transformation parameters {𝑆 (𝑤);𝑏 (𝑤)} ∈ R𝑑 from the
group embedding𝑤 . The predicted affine parameters are then used

to modulate the activations sequence ℎ = {ℎ1
1 . . . ℎ

1
𝑇

; . . . ;ℎ𝑁1 . . . ℎ𝑁
𝑇
}

as follows:

ℎ̃ = 𝑆 (𝑤) ∗ ℎ − 𝜇 (ℎ)
𝜎 (ℎ) + 𝑏 (𝑤) (11)

where each channel of the whole activation sequence is first nor-
malized separately by calculating the mean 𝜇 and 𝜎 , and then scaled
and biased using the outputted affine parameters 𝑆 (𝑤) and 𝑏 (𝑤). In-
tuitively, this operation shifts the activated hidden motion features
of each individual motion towards a unified group representation to
further encourage the association between them. Finally, the output
features are then projected back to the original motion dimensions
via a linear layer, to obtain the predicted outputs 𝑥0.

3.3 Contrastive Diffusion for Controllable Group Dance
3.3.1 Contrastive Diffusion. We follow [Oord et al. 2018; Zhu et al.
2023] to learn the representations that encode the underlying shared
information between the group embedding information𝑤 and the
group sequence 𝑥 . Specifically, we model a density ratio that pre-
serves the mutual information between 𝑥 and𝑤 as:

𝑓 (𝑥,𝑤) ∝ 𝑝 (𝑥 |𝑤)
𝑝 (𝑥) (12)

𝑓 (·) is a model (i.e., a neural network) to predict a positive score
(how well 𝑥 is related to𝑤 ) for a pair of (𝑥,𝑤).

To enhance the association between the generated group dance
(data) and the group embedding (context), we aim to maximize their
mutual information with a Contrastive Encoder 𝑓 (𝑥,𝑤) via the
contrastive learning objective as in Equation 13. The encoder takes
both the generated group dance sequence 𝑥 and a group embedding
𝑤 as inputs, and it outputs a score indicating the correspondence
between these two.

Lnce = −E
[
log

𝑓 (𝑥,𝑤)
𝑓 (𝑥,𝑤) + Σ𝑥 𝑗 ∈𝑋 ′ 𝑓 (𝑥 𝑗 ,𝑤)

]
(13)

where 𝑋 ′ is a set of randomly constructed negative sequences. In
general, this loss is similar to the cross-entropy loss for classifying
the positive sample, and optimizing it leads to the maximization of
the mutual information between the learned context representation
and the data [Oord et al. 2018]. Using the contrastive objective, we
expect the Contrastive Encoder to learn to distinguish between the
two quantities: consistency (the positive sequence) and diversity (the
negative sequence). This is the key factor that enables the ability to
control diversity and consistency in our framework.

Here, we will describe our strategy to construct contrastive sam-
ples to achieve our target. Recall that we use reverse distribution
𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) of Gaussian Diffusion with the mean as the prediction
of the model while the variance is fixed to a scheduler (Equation 5).
To obtain the contrastive samples, given the true pair is (𝑥0,𝑤),
we first leverage forward diffusion process 𝑞(𝑥𝑚 |𝑥0) to obtain the
noised sample 𝑥𝑚 . Then, our positive sample is 𝑝𝜃 (𝑥𝑚−1 |𝑥𝑚,𝑤). Sub-
sequently, we construct the negative sample from the positive pair
by randomly replacing dancers from other group dance sequences
(𝑥 𝑗0 ≠ 𝑥0) with some probabilities, feeding it through the forward
process to obtain 𝑥 𝑗𝑚 , then our negative sample is 𝑝𝜃 (𝑥

𝑗

𝑚−1 |𝑥
𝑗
𝑚,𝑤).

By constructing contrastive samples this way, the positive pair
(𝑥0,𝑤) represents a group sequence with high consistency, whereas
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the negative one represents a high diversity sample. This is because
mixing a sample with dancers from different groups is likely to result
in substantially distinctive movements between each dancer, mak-
ing it a group dance sample with high degree of diversity. Note that
negative sequences should also match the music because they are
motions generated by the network whose inputs are manipulated to
increase diversity. Particularly, negative samples are acquired from
outputs of the denoising network whose inputs are both the current
music and the noised mixed group with some replaced dancers. As
the network is trained to reconstruct only positive samples, its out-
puts will likely follow the music. Therefore, negative samples are not
just random bad samples but are the valid group dance generated
from the network that is trained to generate group dance condi-
tioned on the music. This is because our main diffusion training
objective (Section 4.1.2) is calculated only for ground-truth dances
(positive samples) that are consistent with the music. Our proposed
strategy also allows us to learn a more powerful group representa-
tion as it directly affects the reverse process, which is beneficial to
maintaining consistency in long-term synthesis.

3.3.2 Diversity vs. Consistency. Using the Contrastive Encoder
𝑓 (𝑥𝑚,𝑤), we extend the classifier guidance [Dhariwal and Nichol
2021] to control the generation process. Accordingly, we incorpo-
rate 𝑓 (𝑥𝑚,𝑤) in the contrastive framework to replace the guiding
classifier in the original formula, since it provides a score of how
consistent the sample is with the group information. In particular,
we shift the mean of the reverse diffusion process with the log gra-
dient of the Contrastive Encoder with respect to the generated data
as follows:

𝜇𝜃 (𝑥𝑚,𝑚) = 𝜇𝜃 (𝑥𝑚,𝑚) + 𝛾 · Σ𝜃 (𝑥𝑚,𝑚)∇𝑥𝑚 log 𝑓 (𝑥𝑚,𝑤) (14)

where 𝛾 is the control parameter that uses the encoder to enforce
consistency and connection with the group embedding. Since the
Contrastive Encoder is trained to classify between high-consistency
and high-diversity samples, its gradients yield meaningful guidance
signals to control the trade-off process. Intuitively, a positive value
of 𝛾 encourages more consistency between dancers while a negative
value (which corresponds to shifting the distribution with a negative
gradient step) boosts the diversity between each individual dancer.

4 EXPERIMENTS

4.1 Implementation Details
4.1.1 Network Parameters. The hidden layer of all the MLPs con-
sists of 512 units followed by GELU activation. The hidden dimen-
sion of all attention layers is set to 𝑑 = 512, and the attention adopts
a multi-head scheme [Vaswani et al. 2017] with 8 attention heads.
We also use a feature-wise linear modulation (FiLM) [Perez et al.
2018; Tseng et al. 2023] after each attention layer to strengthen the
influence of the conditioning context. At the end of each attention
block, we append a 2-layer feed-forward network [Vaswani et al.
2017] with a feed-forward size of 1024 to enhance the expressiv-
ity of the learned features. We extract the features from the raw
audio signal by leveraging the representations from the frozen Juke-
box [Dhariwal et al. 2020], a pre-trained generative model for music,
to enhance the model’s generalization ability to several kinds of
in-the-wild music. In total, the Group Diffusion Denoising Network

is comprised of 𝐿 = 5 stacked Music-Motion Transformer and Group
Global Attention blocks, along with 2 transformer encoder layers
to encode the music features. We implement the architecture of
the Contrastive Encoder similarly to the Denoising Network but
without cross attention since it does not take the music as input. The
output sequence of the Contrastive Encoder is then averaged out and
fed into an output layer with one unit. We also make the Contrastive
Encoder aware of the current step in the diffusion chain by append-
ing the diffusion timestep embedding to the motion sequence so
that it can provide correct guidance signals in the sampling process.
Overall, our model has approximately 62𝑀 trainable parameters.

4.1.2 Training. To train the denoising diffusion network, we use
the "simple" objective as introduced in [Ho et al. 2020].

Lsimple = E𝑥0∼𝑞 (𝑥0 |𝑐 ),𝑚∼[1,𝑀 ]
[
∥𝑥0 − G𝜃 (𝑥𝑚,𝑚, 𝑐)∥2

2
]

(15)

To improve the physical plausibility and prevent artifacts of the
generated motion, we also utilize auxiliary geometric losses similar
to [Tevet et al. 2023].

Lgeo = 𝜆posLpos + 𝜆𝑣𝑒𝑙Lvel + 𝜆footLfoot (16)

In particular, geometric losses mainly consist of (i) a joint position
loss Lpos to better constrain the global joint hierarchy via forward
kinematics; (ii) a velocity loss Lvel to increase the smoothness and
naturalness of the motion by penalizing the difference between the
differences between the velocities of the ground-truth and predicted
motions; and (iii) a foot contact loss Lfoot to mitigate foot skat-
ing artifacts and improve the realism of the generated motions by
ensuring the feet to stay stationary when ground contact occurs.

Our total training objective is the combination of the "simple" dif-
fusion objective, the auxiliary geometric losses, and the contrastive
loss (Equation 13):

L = Lsimple + Lgeo + 𝜆nceLnce (17)

We train our model on 4 NVIDIA V100 GPUs using Adam opti-
mizer [Kingma and Ba 2014] with a learning rate of 1e−4 and a
batch size of 64 per GPU, which took about 7 days for 500k itera-
tions. The models are trained with𝑀 = 1000 diffusion noising steps
and a cosine noise schedule [Nichol and Dhariwal 2021]. During
training, group dance motions are randomly sampled with sequence
length 𝑇 = 150 at 30 Hz, which corresponds to 5-second pieces of
music. For geometric losses, the loss weights are empirically set to
𝜆pos = 1.0, 𝜆smooth = 1.0, and 𝜆foot = 0.005, respectively. For the
contrastive loss Lnce, its weight is 𝜆nce = 0.001, the probability of
replacing dancers for negative sequences is 0.5, and the number of
negative samples empirically is selected to 10.

4.1.3 Testing. At test time, we use the DDIM sampling tech-
nique [Song et al. 2021] with 50 steps to accelerate the sampling
speed of the reverse diffusion process. Accordingly, our model can
achieve real-time generation at 30 Hz on a single RTX 2080Ti GPU
(excluding the music features extracting step), thanks to the paral-
lelization of the Transformer architecture.

To enable long-term generation, we adopt a strategy that is simi-
lar to the one described in [Tseng et al. 2023]. Specifically, we divide
the input music sequence into multiple overlapping chunks, with
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each chunk having a maximum window size of 5 seconds and over-
lapped by half with the adjacent chunk. The group dance motions
are then generated for each chunk along with the corresponding au-
dio. Subsequently, we merge the outputs by blending the overlapped
region between two consecutive chunks using spherical linear inter-
polation, with the interpolation weight gradually decaying from the
current chunk to the next chunk. However, for group choreography
synthesis, our model generates dance motions for each dancer in
random order. Therefore, we need to establish correspondences be-
tween dancers across the chunks (i.e., identifying which one of the
𝑁 dancers in the next chunk corresponds to a dancer in the current
chunk). To accomplish this, we organize all dancers in the current
chunk into one set and the dancers in the next chunk into another
set, forming a bipartite graph between the two chunks. We can then
utilize the Hungarian algorithm [Kuhn 1955] to find the optimal
matching, where the Euclidean distance between the two pose se-
quences serves as the matching weights. Our blending technique
is applied at each step of the diffusion sampling process, starting
from pure noise, thus it allows the model to gradually denoise the
chunks to make them compatible for blending.

4.2 Experimental Settings
4.2.1 Dataset. We use AIOZ-GDance dataset [Le et al. 2023] in our
experiments. AIOZ-GDance is a large-scale group dance dataset
including paired music and 3D group motions captured from in-
the-wild videos using a semi-automatic method, covering 7 dance
styles and 16 music genres. We follow the training and testing split
as in [Le et al. 2023] in our experiments.

4.2.2 Evaluation Protocol. We use the following metrics to evaluate
the quality of single dancing motion: Frechet Inception Distance
(FID) [Heusel et al. 2017; Li et al. 2021b], Motion-Music Consistency
(MMC) [Li et al. 2021b], Generation Diversity (GenDiv) [Huang et al.
2020; Lee et al. 2019; Li et al. 2021b] , Physical Foot Contact score
(PFC) [Tseng et al. 2023]. Concretely, FID score measures the realism
of individual dance movements against the ground-truth dance. The
MMC evaluates the matching similarity between the motion and the
music beats, i.e., how well generated dances follow the beat of the
music. The generation diversity (GenDiv) is evaluated as the average
pairwise distance of the kinetic features of the motions [Onuma
et al. 2008]. The PFC evaluates the physical plausibility of the foot
movements by calculating the agreement between the acceleration
of the character’s center of mass and the foot’s velocity.
To evaluate the group dance quality, we follow three metrics

introduced in [Le et al. 2023]: Group Motion Realism (GMR), Group
Motion Correlation (GMC), and Trajectory Intersection Frequency
(TIF). In general, the GMR measures the realism between generated
and ground-truth group motions by calculating Frechet Inception
Distance on the extract group motion features. The GMC evaluates
the synchrony between dancers within the generated group by
calculating their cross-correlation. The TIF measures how often the
generated dancers collide with each other in their dance movements.

4.2.3 Baselines. We compare our GCD method with several re-
cent approaches on music-driven dance generation: FACT [Li et al.
2021b], Transflower [Perez et al. 2021], and EDGE [Tseng et al.

Table 1. Performance comparison. High Consistency: parameter𝛾 = 1; High
Diversity: parameter 𝛾 = −1; Neutral: parameter 𝛾 = 0

Method FID↓ MMC↑ GenDiv↑ PFC↓ GMR↓ GMC↑ TIF↓
FACT [Li et al. 2021b] 56.20 0.222 8.64 3.52 101.52 62.68 0.321
Transflower [Perez et al. 2021] 37.73 0.217 8.74 3.07 81.17 60.78 0.332
EDGE [Tseng et al. 2023] 31.40 0.264 9.57 2.63 63.35 61.72 0.356
GDANCER [Le et al. 2023] 43.90 0.250 9.23 3.05 51.27 79.01 0.217

GCD
(Ours)

High Consistency 31.48 0.272 8.78 2.55 39.22 82.01 0.115
Neutral 31.16 0.261 10.87 2.53 31.47 80.97 0.167

High Diversity 33.37 0.255 11.34 2.58 35.63 78.19 0.209

2023], all of which are adapted for benchmarking in the context of
group dance generation [Le et al. 2023] since the original methods
were specifically designed for single-dance. We also evaluate against
GDanceR [Le et al. 2023], a recent model specifically designed for
generating group choreography.

4.3 Experimental Results
4.3.1 Quality Comparison. Table 1 shows a comparison among the
baselines FACT [Li et al. 2021b], Transflower [Perez et al. 2021],
EDGE [Tseng et al. 2023], GDanceR [Le et al. 2023], and our pro-
posed GCD. The results clearly demonstrate that our default model
setting with “neutral" mode outperforms the baselines significantly
across all evaluations. We also observe that EDGE, a recent diffusion
dance generation model, can yield very competitive performance
on single-dance metrics (FID, MMC, GenDiv, and PFC). This sug-
gests the advantages of diffusion approaches in motion generation
tasks. However, it is still inferior to our model under several group
dance metrics, showing the limitations of single dance methods in
the context of group dance creation. Experimental results highlight
the effectiveness of our approach in generating high-quality group
dance motions.
To complement the quantitative analysis, we present qualita-

tive examples from FACT, GDanceR, and our GCD method in Fig-
ure 4. Notably, FACT struggles to deal with the intersection problem,
which is reasonable given that it was not originally designed for
group dance generation. As a result, the generated motions from
FACT lack coordination and synchronization in most cases. While
GDanceR shows improvements in terms of motion quality com-
pared to FACT, the generated motions appear floating, unnatural,
and sometimes unsynchronized in many cases. These drawbacks
indicate that GDanceR’s effort on generating group choreography
would still require more refinement to produce consistent and cohe-
sive movements among the dancers. In contrast, our method excels
in both controlling consistency and promoting diversity among
the generated group dance motions. The outputs from our method
demonstrate well-coordinated and realistic movements, implying
that it can resolve the challenges of maintaining group coherence
while delivering visually appealing results more effectively.

Overall, the conducted quantitative analysis and visual compar-
isons reaffirm the superior performance of our proposed GCD to
generate high-quality, synchronized, and visually pleasing group
dance motions.
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Fig. 4. Comparison between different dance generation methods when generating dancing in groups.

4.3.2 Diversity and Consistency Analysis. Table 1 also presents an in-
depth analysis of our method’s performance across seven evaluation
metrics by adjusting the parameter 𝛾 in Equation 14 to control the
consistency and diversity of the generated group choreographies.
The findings reveal that our GCD with high consistency setting
(𝛾 = 1), performs better than other settings in terms of MMC, GMC,
and TIRmetrics, whereas the high diversity setting (𝛾 = −1) achieves
better results in the GenDiv metric. Meanwhile, the default model
shows the best performance in both realism metrics (FID and GMR).
It can also be seen that the model is relatively robust to the physical
plausibility score (PFC) as there are no noticeable differences among
the metric in the three settings. This implies that our model is able
to create group animation with different consistency or diversity
levels without compromising the plausibility of the movements too
much. More interestingly, we found that there are indeed positive
correlations between the two measures MMC, GMR, and the trade-
off parameter. It is clear that these metrics are better when the
consistency level increases. This is reasonable as we expect higher
correspondence between the motion and the music (MMC) or higher
correlation of the group motions (GMR) when the consistency level
grows, which also agrees with the definition of these metrics.
Consistency setups in GCD lead to more similar movements be-

tween dancers. As a result, this similarity contributes to high scores
in MMC, GMR, and TIR metrics. In contrast, the diversity setups can
synthesize more complex motions with greater variation between
dancers as measured by the GenDiv metric, but this also makes
it more challenging to reach high values of FID, MMC, and TIR,
compared with other setups. In addition, Figure 6 shows an example
of correlations between motion beats and music beats under high
consistency and diversity settings. The music beats are extracted
using the beat tracking algorithm from the Librosa library [McFee
et al. 2015]. Notably, the velocity curves in high consistency setting
display relatively similar shapes, whereas in the high diversity sce-
nario, the curves are clearly distinguished among dancers. Despite
the greater variations in high diversity setting, we can observe that

the generated motions are matched with the music as the music
beats are mostly located near the extrema of the motion curves in
both settings. The experiment indicates that our model can faith-
fully capture different aspects of group choreography with different
settings, including diversity and synchrony of the motions. This
demonstrates the potential of our method towards various dance
applications such as dance training or composing. Furthermore,
our method can also produce distinctively different animation se-
quences under the same setting while adhering to the input music.
It is also important to note that all three setups of GCD significantly
outperform other baseline models. This verifies the effectiveness of
our proposed approach and shows that it can create high-fidelity
group dance animations in any setting. For a more detailed visual-
ization of the results, please refer to Figure 5 and our accompanying
supplementary video.

4.3.3 Number of Dancers Analysis. Table 2 provides insights into
results obtained when generating arbitrarily different numbers of
dancers using our proposed GCD in the neutral setting. In general,
FID, GMR, and GMC metrics do not exhibit a clearly strong corre-
lation with the number of generated dancers but display diverse
and varied results. The MMC metric consistently shows its stability
across all setups.
As the number of generated dancers increases, the generation

diversity (GenDiv) decreases while the trajectory intersection fre-
quency (TIF) increases. However, it is worth noting that the dif-
ferences observed in these metrics are relatively minor compared
to those produced by GDanceR [Le et al. 2023]. This implies that
our method can effectively control consistency and diversity, sig-
nificantly reducing the chances of collisions between dancers and
maintaining the overall quality of generated group dance motions.

For a detailed visualization of results, please refer to Figure 7 and
our accompanying supplementary video. These results underscore
the robustness and flexibility of our method in generating group
dance motions across varying numbers of dancers while ensuring
consistency, diversity, and avoiding collisions between performers.
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Fig. 5. Consistency and diversity trade-off. High Consistency: parameter
𝛾 = 1; High Diversity: parameter 𝛾 = −1; Neutral: parameter 𝛾 = 0.
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Fig. 6. Correlation between the motion and music beats. The solid curve
represents the kinetic velocity of each dancer over time and the vertical
dashed line depicts the music beats of the sequence. The motion beats can
be detected as the local extrema from the kinetic velocity curve.

4.3.4 Long-term Analysis. To evaluate the efficacy of the guidance
signal in GCD for creating long-term group dance sequences, we
conducted a comparative analysis between GCD and the baseline
model GDanceR [Le et al. 2023]. The experiment involved musical
pieces of different durations: 15 seconds, 30 seconds and 60 seconds.
We show the results with the guidance parameter 𝛾 = 0.5 to enforce
consistency with the music over a long duration. For more detailed
information, please refer to Figure 9 and our supplementary video.

While both methods produce satisfactory results in the first few
seconds of the animations (e.g., about 5-6 seconds), GDanceR starts
to exhibit floating and unrealistic movements or freeze into a mean
pose in the later period of the sequence. Figure 8 shows the Motion
changes comparison between our GCD method and GdanceR. The
motion change magnitudes are calculated as average differences of

Table 2. Performance of group dance generation methods when we increase
the number of generated dancers, compared with GDanceR. In GCD setup,
Neutral mode with 𝛾 = 0 is used.

Method
#Generated
Dancers

FID↓ MMC↑ GenDiv↑ GMR↓ GMC↑ TIF↓

GDanceR

2 48.82 0.248 9.36 53.83 75.44 0.086
3 44.47 0.245 9.36 55.85 74.07 0.104
4 47.32 0.248 9.24 58.79 77.71 0.162
5 44.19 0.249 8.99 55.05 78.72 0.218

GCD
(Ours)

2 32.62 0.266 10.41 34.09 80.26 0.067
3 33.94 0.266 10.02 36.25 79.93 0.084
4 35.89 0.251 9.87 36.28 81.82 0.125
5 35.08 0.264 9.92 38.43 81.44 0.168

#2
#3

#4
#5

Fig. 7. Group dance generation results of GCD in terms of different numbers
of dancers.

the kinetic features [Onuma et al. 2008] between consecutive frames.
It is evident that the motion change magnitude of GDanceR is grad-
ually lower and approaching zero in the later half of the 60-second
music piece, whereas our method can preserve high magnitudes
and variations over time. This is because GDanceR generates almost
frozen dance choreographies during this period. In contrast, the
group dance motions produced by GCD remain natural with diverse
movements throughout the entire duration of all music samples.

These findings confirm that our approach can effectively address
the problem of motion generation in long-horizon group dance
scenarios. It maintains the motion quality and dynamics of the
dance motions, ensuring that the created animations remain visu-
ally appealing throughout extended periods. This highlights the
advantage of the contrastive strategy to enhance the consistency
of the movements of dancers with their group and the music, re-
sulting in significant improvements for long-term dance sequence
generation compared to the baseline GDanceR.
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Fig. 8. Motion changes comparison between our proposed GCD and
GDanceR. The experiment is conducted on generated group dance results
of 60-second music pieces.
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Fig. 9. Long-term results of the 60-second clip. For clearer visualization,
please visit our demo video.

4.3.5 Ablation Analysis.
Loss Terms. The contribution of the geometric loss Lgeo and con-
trastive loss Lnce in GCD is thoroughly analyzed and presented
in Table 3. The results demonstrate that both losses play a crucial
role in enhancing the overall performance across all four evaluation
protocols. In particular, it can be seen that the effect of Lgeo on
realism metrics (FID, GMR, and PFC) is significant. This observation
can be attributed to the fact that this loss improves the physical
plausibility and naturalness of the dance motions, empirically miti-
gating common artifacts such as jittery motion or foot skating. By
enforcing the geometric constraints, GCD can generate faithful mo-
tions that are on par with real dances. Moreover, the contrastive loss
Lnce contributes positively to the favorable results in the synchrony
measures (GMR and GMC). This loss term encourages the model
to synchronize the movements of multiple dancers within a group,
thus improving the harmonious coordination and cohesion of the
generated choreographies. In general, the results of Lgeo and Lnce
validate their importance across various evaluation metrics.

Group Global Attention. Results presented in first two lines
of Table 3 demonstrate substantial improvements obtained by in-
corporating Group Global Attention into GCD. It clearly shows
that without the Group Global Attention, the performance on the
group dance metrics (GMR and GMC) is significantly degraded. We

Table 3. Global module contribution and loss analysis. Experiments are
conducted on GCD with 𝛾 = 0 (neutral mode).

Method FID↓ MMC↑ PFC↓ GMR↓ GMC↑
GCD 31.16 0.261 2.53 31.47 80.97
GCD w/o Group Global Attention 31.35 0.263 2.62 62.23 60.72
GCD w/o Lgeo 39.27 0.254 2.95 37.73 80.11
GCD w/o Lnce 35.10 0.241 2.57 47.47 71.82
GCD w/o (Lgeo & Lnce) 40.99 0.232 2.98 49.98 71.02

also observe that the removal of this block resulted in inconsistent
movements across dancers, where they seem to dance in freestyle
without any group choreographic rules and collide with each other
in many cases, although they may still follow the rhythm of the mu-
sic. Results suggest the vital importance of ensuring coherency and
regulating collisions for visually appealing group dance animations.

4.4 User Study
Qualitative user studies are important for evaluating generative
models as the perception of users tends to be the most relevant met-
ric for many downstream applications. Therefore, we conduct user
studies to evaluate our approach in terms of group choreography
generation. We organized two separate studies and enlisted roughly
50 individuals with diverse backgrounds to participate in our ex-
periment. Each participant should have some relevant experience
in music and dance (at least 1 month of studying or working in
dance-related professions). The age of participants varied between
20 and 50, with approximately 55% female and 45% male.

In the initial study, we requested the participants to evaluate the
dancing animations based on three criteria: the naturalness of the
dancing motions (Realism), how well the movements match the
music (Music-Motion Correspondence), and how well the dancers
interact or synchronize with each other (Synchronization between
Dancers). Participants were asked to rate scores from 0 to 10 for each
criterion, ranging from (0)-very poor, (5)-acceptable, to (10)-very
good. The collected scores were then normalized to range [0, 1].

This user study encompassed a total of 189∗3 samples with songs
that are not present in the train set, including those generated from
GDanceR [Le et al. 2023], real dance clips from the dataset, and gen-
erated results from our proposed method in neutral mode. Figure 10
shows average scores for all mentioned targets across three experi-
ments. Notably, the ratings of our method are significantly higher
than GDanceR across all three criteria. We also perform Tukey
honest significance tests to determine the significant differences
among the three methods. For the first two criteria (Realism and
Music-Motion Correspondence), we observe that the mean scores
of all methods are significantly different with 𝑝 < 0.05. For synchro-
nization critera, the differences are significant except for the scores
between our method and real dances (𝑝 ≈ 0.07). This highlights that
our method can even achieve comparable scores with real dances,
especially in the synchronization evaluation. This can be attributed
to the proposed contrastive diffusion strategy, which can effectively
maintain a balance between the consistency of the movements and
the group/audio context, as well as diversity in generated dances.
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Fig. 10. User study results in three criteria: Realism; Music-Motion Corre-
spondence; and Synchronization between Dancers.

In the second study, we aim to assess the diversity and consis-
tency of the generated dance outputs and determine if they met the
expectations of the users. Specifically, participants were asked to
assign scores ranging from 0 to 10 to evaluate the consistency and di-
versity of each dance clip, i.e., how synchronized or how distinctive
movements between dancers does the group dance present. A lower
score indicated higher consistency, while a higher score indicated
greater diversity. These scores were subsequently normalized to
[−1, 1] to align with the studying range of the control parameter
employed in our proposed method.
Figure 11 depicts a scatter plot illustrating the relationship be-

tween the scores provided by the participants and the 𝛾 parameter
that was used to generate the dance samples. The parameter val-
ues were randomly drawn from a uniform distribution with range
[−1, 1] to create the animations along with randomly sampled musi-
cal pieces. The survey shows a strong correlation between the user
scores and the control parameter, in which we calculated the corre-
lation coefficient to be approximately 0.88. The results indicate that
the diversity and consistency level of the generated group choreog-
raphy samples is mostly in agreement with the user evaluation, as
indicated by the scores obtained.

5 DISCUSSION AND CONCLUSION
While controlling consistency and diversity in group dance gener-
ation by using our proposed GCD has numerous advantages and
potentials, there are certain limitations. Firstly, it requires tuning the
parameters and a complex system that is not trivial to train, to en-
sure that the generated dance motions can produce the desired level
of similarity among dancers while still presenting enough variation
to avoid repetitive or monotonous movements. This may involve
long inference processes and may require significant computational
resources in both the training and testing phases.
Secondly, over-controlling consistency and diversity may intro-

duce constraints on the creative freedom of generated dances. While
enforcing consistency can lead to synchronized and harmonious
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Fig. 11. Correlation between the controlling consistency/diversity and the
scores provided by the users .

group movements, it may limit the possibility of exploring uncon-
ventional or new experimental dance styles. On the other hand, pro-
moting diversity results in unique and innovative dance sequences,
but it may sacrifice coherence and coordination among dancers.
Although our model can synthesize semantically faithful group

dance animation with effective coordination among dancers, it does
not capture clear physical contact between dancers such as hand
touching. This is because the data we used in training does not
contain such detailed hand motion information. We think that ex-
ploring group dance with realistic physical hand interactions is a
promising area for future work. Additionally, while our method of-
fers a trade-off between diversity and consistency, achieving perfect
alignment between high-diversity movements and music remains a
challenging task. The diversity level among dancers and the align-
ment with music are also heavily influenced by the training data.
We believe further efforts are required to reach this.

Lastly, the subjective nature of evaluating consistency and diver-
sity poses a challenge. Metrics for measuring these aspects may not
be best fitted. We believe it is essential to consider diverse perspec-
tives and demand domain experts to validate the effectiveness and
quality of the generated dance motions.

To conclude, we have introduced GCD, a new method for audio-
driven group dance generation that effectively controls the con-
sistency and diversity of generated choreographies. By using con-
trastive diffusion along with the guidance technique, our approach
enables the generation of a flexible number of dancers and long-
term group dances without compromising fidelity. Through our
experiments, we have demonstrated the capability of GCD to pro-
duce visually appealing and synchronized group dance motions.
The results of our evaluation, including comparisons with existing
methods, highlight the superior performance of our method across
various metrics including realism and synchronization. By enabling
control over the desired levels of consistency and diversity while
preserving fidelity, our work has the potential for applications in
entertainment, virtual performances, and artistic expression, advanc-
ing the effectiveness of deep learning in generative choreography.
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